

The Economics of Wind Power

Status and Perspectives

Professor Poul Erik Morthorst Risø DTU

Photos:

DONGEnergy A/S

The main Socio-economic Parameters

The main parameters governing wind power economics include the following:

- Investment costs, including auxiliary costs for foundation, grid-connection, and so on.
- Operation and maintenance costs
- Electricity production / average wind speed
- Turbine lifetime
- Discount rate

Investments in a 1 MW turbine

	Investment	Share
	(1000 € /MW)	(%)
Turbine (ex works)	928	75.6
Foundation	80	6.5
Electric installation	18	1.5
Grid-connection	109	8.9
Control systems	4	0.3
Consultancy	15	1.2
Land	48	3.9
Financial costs	15	1.2
Road	11	0.9
Total	1227	100

Turbine Investment Cost in different Countries

Development of Turbine Size in different Countries

Operation and Maintenance

•O&M costs: Approx. 1.5 c€/kWh

O&M components

- Insurance
- Regular maintenance
- Repair
- Spare parts
- Administration

Operation and Maintenance

Cash flow for Wind Power plant

Cash flow for Wind Power plant

DTU

Cash flow for Wind Power plant

NPC =
$$I/(1+i)^0 + C_1/(1+i)^1 + C_2/(1+i)^2 + ... + C_{20}/(1+i)^{20}$$

DTU

Cash flow for Wind Power plant

$$NPV = I/(1+i)^{0} + C_{1}/(1+i)^{1} + C_{2}/(1+i)^{2} + ... + C_{20}/(1+i)^{20}$$

Average cost over the lifetime = Levellised cost (PMT)

Calculation of Unit Cost

Number of full load hours:

The number of hours the turbine has to run at maximum capacity to produce the total annual production

Calculation of Unit Cost

Number of full load hours:

The number of hours the turbine has to run at maximum capacity to produce the total annual production

Unit cost = Levellised costs / Average Annual Production

= c€/kWh (approx. 6-7 c€/kWh)

Production costs

Importance of discount rate

Socio-Economics vs. Business Economics Basic conditions

	Socio-Economics	Business
		Economics
Prices	Real terms	Nominal prices
	(no inflation)	(including inflation)
Discount rate	Socio determined	Market determined
	Real terms	Nominal terms
	Typically 5-8% p.a.	Including risk
		premium
Revenues	Normally only costs	Payment schedules
		important
Conditions	Excluding taxes etc.	Including taxes,
		depreciation rules
		etc.
Lifetime	Technical lifetime	Economic lifetime
	(20 years)	(< 20 years)

A real Socio-Economic analysis also includes...

	Socio-Economics	Business
		Economics
Adjustment	Investment is	Not considered
factor	substituting	
	alternative use	
Externalities	Issues not included in	Not considered
	prices and costs	

Development of Unit Cost

Increase in Turbine Price in different Countries

Experience Curve for Wind Power Unit Cost

Experience Curve for Wind Power Unit Cost

Wind Power Unit Cost by 2015

Wind Power compared to Conventional Plants

Displaced or partly displaced cost components:

- Fuel costs
- Cost of CO₂-emissions (as given by the European Trading System for CO₂, ETS)
- Operation and maintenance costs
- Capital cost, including planning and site work

Wind Power Compared to Natural Gas Power Plant – changing fuel costs

Wind Power Compared to Coal Fired Power Plant – changing costs of CO₂

Conclusions

- Wind Power Economics are fairly simple with only a few important parameters
 - The annual wind-generated power production is tantamount
- Operation and Maintenance Costs are getting increasingly important
 - Improved reliability of turbine and fewer service visits
- Wind power has experienced a learning rate of 10% p.a.
 - Disrupted in 2004 by a price increase of more than 20%
- Increasing fuel prices needed to make wind power economic competitive to conventional plants
 - The European Emission Trading scheme on CO2 will not do the job alone